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ABSTRACT. Let VP be the variety generated by an order primal algebra of finite
signature associated with a finite bounded poset P that admits a near-unanimity
operation. Let Λ be a finite set of linear identities that does not interpret in VP.
Let VΛ be the variety defined by Λ. We prove that VP ∨VΛ is n-permutable for
some n. This implies that there is an n such that n-permutability is not join-
prime in the lattice of interpretability types of varieties. In fact, it follows that
n-permutability where n runs through the integers greater than 1 is not prime in
the lattice of interpretability types of varieties.

We strengthen this result by making P and Λ more special. We let P be the
6-element bounded poset that is not a lattice and Vm the variety defined by the
set of majority identities for a ternary operational symbol m. We prove in this
case that VP∨Vm is 5-permutable. This implies that n-permutability is not join-
prime in the lattice of interpretability types of varieties whenever n≥ 5. We also
provide an example demonstrating that VP∨Vm is not 4-permutable.

1. INTRODUCTION

Let Γ be a set of identities over a certain signature of a variety. We say that Γ

interprets in a variety K if by replacing the operation symbols in Γ by term ex-
pressions of K —same symbols by same terms with arities kept—the so obtained
set of identities holds in K . A variety K1 interprets in a variety K2 if there is a
set of identities Γ that defines K1 and interprets in K2. Roughly speaking, a va-
riety K1 interprets in a variety K2 if K2 has a richer algebraic structure than K1.
Nevertheless, we have to be cautious with this rough approach, since, for exam-
ple, the variety of sets with no basic operations and the variety of semigroups are
equi-interpretable, meaning that they interpret in each other.

As easily seen, interpretability is a quasiorder and equi-interpretability is an
equivalence on the class of varieties. The blocks of equi-interpretability are called
the interpretability types. In [3] Garcia and Taylor introduced the lattice of inter-
pretability types of varieties that is obtained by taking the quotient of the class of
varieties quasiordered by interpretability and the equi-interpretabiliy relation. The
join in this lattice is described as follows. Let K1 and K2 be two varieties of dis-
joint signatures. Let K1 and K2 be defined by the sets Σ1 and Σ2 of identities,
respectively. Their join K1∨K2 is the variety defined by Σ1∪Σ2. The so defined
join is compatible with the interpretability relation of varieties, and naturally yields
the definition of the join operation in the lattice of interpretability types of varieties.

Let n ≥ 2 be an integer. An algebra A is congruence n-permutable, if for any
two congruences α and β of A, αβ · · · = βα . . . where each side of the equality
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consists of n alternating factors of α and β . An algebra A is congruence distribu-
tive (congruence modular), if for any three congruences α, β and γ of A (with
α ≤ γ)

(α ∨β )∧ γ = (α ∧ γ)∨ (β ∧ γ).

A variety is n-permutable (distributive, modular) if all of its members are congru-
ence n-permutable (distributive, modular). An n-ary operation f is idempotent if it
satisfies the identity f (x,x, . . . ,x) = x. A variety is idempotent if all of its members
have idempotent basic operations.

In [3] Garcia and Taylor formulated the conjectures that 2-permutability is join-
prime and the interpretability types of the modular varieties form a prime filter
in the lattice of interpretability types of varieties. In [15] Tschantz announced
a proof of the conjecture on 2-permutability. However, his proof has remained
unpublished.

For restricted versions of the conjectures some positive results have been at-
tained. Following the pioneering work of Hobby and McKenzie on locally finite
varieties in [8], Kearnes and Kiss stepped beyond locally finiteness and gave a clas-
sification of varieties in [9]. Their results imply that certain idempotent Mal’cev
classes identified in their work form a prime filter in the lattice of interpretabil-
ity types of idempotent varieties. In [16] Valeriote and Willard, by supplementing
the characterization of a Mal’cev class in [9], proved that the interpretability types
of the idempotent n-permutable varieties for n ≥ 2 form also a prime filter in the
idempotent case. In [14] Opršal obtained a similar result for idempotent modular
varieties. In [10] Kearnes and Szendrei proved that for any n having an n-cube
term is a join-prime property in the idempotent case.

In the present note we give some negative results related to the conjecture on
permutability in the general case (where idempotency is not assumed). We shall
prove that the filter of the interpretability types of the n-permutable varieties where
n runs through the integers greater than 1 is not prime in the lattice of interpretabil-
ity types of varieties. We shall also prove that for any n≥ 5, n-permutability is not
join-prime in the lattice of interpretability types of varieties.

2. n-PERMUTABILITY FOR SOME n

An n-ary operation f , n ≥ 3, is a near-unanimity operation if it satisfies the
identities

f (y,x, . . . ,x) = f (x,y, . . . ,x) = · · ·= f (x,x, . . . ,y) = x.

A ternary near-unanimity operation is called a majority operation. Clearly, the
near-unanimity operations are idempotent. It is well known that on a finite set any
clone that contains an n-ary near-unanimity operation is finitely generated. It is
also known that any algebra that has a near-unanimity term operation is congruence
distributive.

Let P denote a finite poset. Let P be an algebra whose underlying set equals
that of P and whose basic operations form a generating set of the clone of P. We
call such an algebra an order primal algebra with respect to P. Let VP denote the
variety generated by P. If P admits a near-unanimity operation, then the clone of
monotone operations of P is finitely generated, and so the algebra P can be chosen
to be of finite signature. We always make this choice throughout the present paper
for any finite poset P when P admits a near-unanimity operation. Then by Baker’s
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finite basis theorem in [1] for finite algebras of finite signature in a congruence
distributive variety, there exists a finite set Σ of identities that serves as a finite
basis for VP.

An identity is called a linear identity if on both sides it has at most one operation
symbol. Let P be a finite bounded poset that admits a near-unanimity operation and
Λ a finite set of linear identities that does not interpret in VP. We assume that Λ is
given in a signature disjoint from that of VP. Let V = VP∨VΛ, so V is the variety
that is defined by the identities Σ∪Λ. A term reduct of an algebra A is an algebra
whose underlying set coincides with that of A and whose basic operations are term
operations of A. We note that by Jónsson’s theorem for congruence distributive va-
rieties in [2], every algebra in V has a term reduct that is isomorphic to a subdirect
power of P where P is an order primal algebra for P. Later in the proof of our main
result we use this observation.

Our aim is to prove in this section that V is n-permutable for some n. It follows
immediately that there exists an n such that n-permutability is not join-prime in the
lattice of interpretability types of varieties. For the proof of the main result of this
section we require two simple propositions.

Proposition 2.1. Let Q be finite bounded poset, and Q an order-primal algebra de-
termined by Q. The compatible quasiorders of Q are the equality, the full relation,
≤ and ≥.

Proof. It is enough to prove that the quasiorders generated by a single pair are
of the above form. Let p and q be two different elements of Q. When p ≤ q,
then (p,q) clearly generates ≤. Similarly, when q ≤ p, then (p,q) generates ≥.
Finally, observe that any pair (p,q) where p and q are incomparable in Q can be
mapped into any pair by a monotone map, since Q is bounded. Thus the quasiorder
generated by such a pair (p,q) is the full relation. �

Proposition 2.2. Let P be a finite bounded poset that admits a near-unanimity
operation. Let D ≤ Pn and δ a compatible quasiorder of D. Then δ is a product
quasiorder, i.e., there are compatible quasiorders δ1, . . . ,δn of P such that for all
a = (a1, . . . ,an) and a′ = (a′1, . . . ,a

′
n) in D

(a,a′) ∈ δ ⇔∀i : (ai,a′i) ∈ δi.

Proof. For any 1 ≤ i ≤ n, let ηi denote the kernel of the projection from D to the
i-th coordinate. By Theorem 2.6 in [5], the quasiorder lattice of D is a distributive
lattice, so

δ = δ ∨0B = δ ∨ (
∧

ηi) =
∧
(δ ∨ηi).

Since P has no proper subalgebras and is simple, D/ηi ∼= P. Hence the quotient of
δ ∨ηi by ηi corresponds to a compatible quasiorder δi of P by the correspondence
theorem of quasiorders. This gives that for every i

(a,a′) ∈ δ ∨ηi⇔ (ai,a′i) ∈ δi.

�

An n-ary compatible relation of an algebra A is a subuniverse of An. Let D be
an n-ary compatible relation of P. A representation of D is a pair (R,S) where
R is a finite quasiordered set, S is an n-element subset of R and there exists an
enumeration s1, . . . ,sn of the elements of S such that

D = {( f (s1), . . . , f (sn)) | f : R→ P is a monotone map}.
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Notice that if (R,S) and (R′,S′) are two representations of D (even with possibly
different base sets) and P is not an antichain, then the restrictions of R to S and R′

to S′ = {s′1, . . . ,s′n} are isomorphic via the map si 7→ s′i. Indeed, for any si,s j ∈ S,
si ≤ s j if and only if for all monotone f : R→ P, f (si) ≤ f (s j), and the latter
condition only depends on the projections of D onto its i and j coordinates. We
note that every finitary compatible relation of P has a representation obtained in an
obvious way from a primitive positive formula defining the relation in the language
{≤P}, see [4].

Let C and D be two n-ary compatible relations of P such that C⊆D. Then every
representation (R,S) of D extends to a representation (T,S) of C by adding suitable
vertices and edges to (R,S). Indeed, if (R,S) is a representation of D and (R′,S) is
an arbitrary representation of C such that the only elements shared by R and R′ are
the elements of S, then T is obtained from R∪R′ by taking the transitive closure of
the relation of R∪R′.

Let Q and R be two quasiordered sets. A monotone map g : Q→ R is called a
retraction if there is a monotone map h : R→Q such that gh= idR. Then the map h
is called a coretraction. If there is retraction from Q to R, then R is called a retract
of Q. Now we present the main result of the section.

Theorem 2.3. Let P be a finite bounded poset that admits a near-unanimity oper-
ation and P an associated order primal algebra of finite signature. Let VP denote
the variety generated by P. Let Σ be a finite basis for VP and Λ a finite set of linear
identities in a disjoint signature. If Λ does not interpret in the variety VP , then the
variety V defined by Σ∪Λ is n-permutable for some n.

Proof. In order to prove the statement we invoke a theorem of Hagemann in [6],
an implicit proof is given by Lakser in [12]: a variety is n-permutable for some
n if and only if every compatible quasiorder of any algebra of the variety is a
congruence. So it suffices to prove that every compatible quasiorder of any algebra
in V is a congruence. Let us suppose to the contrary that there is an algebra B in
V that has a compatible quasiorder δ that is not a congruence. As we mentioned
earlier, by Jónsson’s theorem, without loss of generality we may assume that B is
a subuniverse of PI for some set I.

We pick an edge (y0,z0) in the quasiordered set (B,δ ) such that (z0,y0) 6∈ δ . We
define two subalgebras of PI whose underlying sets are contained in B. Let C0 be
the subalgebra generated by {y0,z0} in PI , and let D0 be the subalgebra generated
by

C0∪{ f (u1, . . . ,uk) | f is an operation symbol of arity k in Λ, u1, . . . ,uk ∈C0 }
also in PI . Clearly, y0 and z0 are in C0, and C0 ⊆ D0 ⊆ B. Since C0 and D0 are
finitely generated algebras in a locally finite variety VP, both C0 and D0 are finite
subalgebras of PI . Hence there is a finite subset of I such that the projection of D0
to this subset is a bijective map. Let y, z, C and D be the images of y0, z0, C0 and D0
under this projection, respectively. The restrictions of δ to C and D project down
to the quasiorders δC and δD, respectively. So C and D are subalgebras of Pm for
some finite m, and δC and δD are compatible quasiorders of C and D, respectively.
Moreover, (y,z) ∈ δC ⊆ δD and (z,y) /∈ δD.

Let (T,S) and (R,S) be representations of the m-ary compatible relations C and
D, respectively. Without loss of generality—by the note preceding the present
theorem—we assume that R⊆ T where containment means that (T,S) is obtained
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from (R,S) by adding suitable vertices and edges. The quasiorder δD is not a
congruence of D, and by Proposition 2.2, δD is a product quasiorder. So there exist
quasiorders δi, i ∈ S, as in Proposition 2.2. Let r ∈ S such that δr =≤P or δr =≥P
and, in both cases, the r-th coordinates of y and z are different. There exists such
an r, since (y,z) ∈ δD and (z,y) 6∈ δD. For δC there also exist quasiorders δ ′i , i ∈ S,
witnessing the claim in Proposition 2.2. Notice that δ ′i ⊆ δi, i ∈ S, and hence
δ ′r = δr. Without loss of generality we may assume δr =≤P.

Let g be the r-th projection from D to P. We prove that g is a retraction from
the quasiordered set (D,δD) onto the poset P. Certainly, g is monotone. We define
a map h from P to C: for any p ∈ P let h(p) = (h1(p), . . . ,hm(p)), where for any
i ∈ T

hi(p) :=


p, if i≤ r ≤ i in T ,
1, if i 6≤ r ≤ i in T ,
0, otherwise.

Observe that the sequences (hi(p))i∈T , p ∈ P, are monotone maps from T to P.
Therefore, for all p ∈ P, h(p) ∈ C. Moreover, the sequences (hi(p))i∈T , p ∈ P,
differ only on the r-block of T where they are defined to equal the constant p,
respectively. So by applying Proposition 2.2 and taking into account that δr =≤P,

we get that h(p) δ−→ h(q) for all p ≤ q in P. Hence h is monotone. Obviously,
gh = idP by the definitions of g and h. Thus, g is indeed a retraction. Moreover, h
is a corresponding coretraction with the property that its image is contained in C.

By the facts proved in the preceding two paragraphs, since (D0,δ |D0) is isomor-
phic to (D,δD) under an isomorphism that maps (C0,δ |C0) to (C,δC), there exist
a retraction g0 from (D0,δ |D0) onto P and a corresponding coretraction h0 from P
into (D0,δ |D0) such that h0(P)⊆C0.

It is well known that linear identities are preserved under taking retract. Basi-
cally, the proof of this fact will work in our case as well to get that Λ interprets in
VP. Here is the proof adapted to our situation. For any operation symbol f in Λ we
define a term operation t f on P by

t f (x1, . . . ,xk) := g0( f (h0(x1), . . . ,h0(xk)))

provided f is of arity k. The operation t f is well-defined, as h0(P)⊆C0 and by the
definition of D0, f maps k-tuples over C0 into D0. Moreover, t f is monotone on P,
since g0,h0 and f are monotone. Now the t f satisfy the identities of Λ on P, since
the f satisfy them on the tuples over C0. Thus Λ interprets in VP, which contradicts
our assumption on Λ. �

We conjecture that the statement of the preceding theorem extends to every finite
bounded poset P where P generates a join semi-distributive variety.

For the rest of the paper we let P denote the poset with underlying set {0,a,b,c,d,1}
and covering relation

0≺ a,b≺ c,d ≺ 1,

see the first poset in Figure 1. It is well known that P admits a 5-ary but no 4-
ary near-unanimity operation, see [17]. Let Λ be a finite basis for the variety VQ
where Q is a two-element chain. Clearly, Λ does not interpret VP, since Q admits
a majority operation and P does not. Then by the preceding theorem VP ∨VQ is
n-permutable for some n. On the other hand, by Hagemann’s above mentioned
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FIGURE 1. Posets P, X and the 4-crown

result in [6], both of VP and VQ are not n-permutable for any n. Thus we have the
following corollaries.

Corollary 2.4. The filter of the interpretability types of the n-permutable varieties
where n runs through the integers greater than 1 is not prime in the lattice of
interpretability types of varieties

Corollary 2.5. There is an n such that congruence n-permutability is not join-
prime in the lattice of interpretability types of varieties.

3. 5-PERMUTABILITY

Recall that P denotes the six-element poset in Figure 1. Let m be a ternary op-
eration symbol, and let Vm be the variety defined by the set Λ of majority identities
m(y,x,x) = m(x,y,x) = m(x,x,y) = x for m. We saw that Λ does not interpret in
VP. We let V = VP ∨Vm. In this section we shall prove that V is 5-permutable,
and hence for any n≥ 5 congruence n-permutability is not join-prime in the lattice
of interpretability types of varieties.

In [7] Hagemann and Mitschke proved that for a given n, n-permutability of a
variety is a strong Mal’cev condition. Moreover, they gave the following charac-
terization of n-permutability of a variety.

Theorem 3.1 (Hagemann, Mitschke (1973)). Let K be a variety and n ≥ 2 an
integer. Then the following are equivalent.

(1) K is n-permutable.
(2) Any edge of a reflexive compatible binary relation ρ of any algebra A∈K

is in a directed n-cycle of the digraph (A,ρ).

Let B be an algebra in variety V , and ρ a binary reflexive compatible relation of
B. In this section we are going to prove that every edge from ρ is in a directed cycle
of length 5 in the digraph (B,ρ). If this is done, the above result of Hagemann and
Mitschke yields that V is 5-permutable. We already saw that neither variety VP nor
the variety generated by an order primal algebra associated with the two element
chain are congruence n-permutable for any n. On the other hand the join of these
two varieties is 5-permutable. Thus n-permutability is not join-prime in the lattice
of interpretability types of varieties for any n≥ 5.

A colored digraph (R, f ) is a digraph R with a partial map f from R to P. The
map f is called the coloring of (R, f ), and the elements in the domain of f are called
the colored elements of (R, f ). If f extends to a fully defined edge preserving
map from R to P, then (R, f ) and f are called extendible. Most of the time we
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deal with colored quasiordered sets. A finite colored quasiordered set is called
an obstruction, if it is non-extendible, but the restriction of its coloring to any
quasiordered set properly contained in it is extendible. Containment here means
subdigraph containment opposed to spanned subdigraph containment.

In the next lemma we characterize the obstructions among the finite colored
quasiordered sets. The importance of this lemma is given by the fact that a finite
colored quasiordered set is extendible if and only if it does not contain any ob-
struction. We introduce some types of obstructions before stating the lemma and
launching into its proof. The simplest obstructions are the twisted edges, that is,
2-element chains with a fully defined non-monotone coloring. Let X be the 5-
element poset that looks like an X , see the second item in Figure 1. If we color the
minimal elements of X by a and b and its maximal elements by c and d, we obtain
an obstruction called the tight X .

Lemma 3.2. In the class of finite colored quasiordered sets the obstructions are
the twisted edges and the tight X.

Proof. Let (Q, f ) be a finite colored quasiordered set. We assume that (Q, f ) con-
tains none of the twisted edges and a tight X . We then prove that f is extendible.
Let α be the largest equivalence contained in the quasiorder of Q, and Q′ the quo-
tient poset Q/α . On each block of α , f must take on at most one value since there
are no twisted edges contained in (Q, f ). Hence f induces a partial map f ′ from the
poset Q′ to P. Observe that, by the assumption, the colored poset (Q′, f ′) contains
none of the twisted edges and a tight X . The statement of the present lemma was
verified for the case when Q is a poset in [17], cf. the remark on fences on page 89
and Theorem 3.3. Hence f ′ extends to a fully defined monotone map from Q′ to P.
By composing a full extension of f ′ with the natural map from Q to Q′ we obtain
a required extension of f . �

Let D be a subalgebra of Pn and ρ a reflexive compatible binary relation on
D. Then, we conceive ρ as a compatible 2n-ary relation of P, and hence it has a
representation of the form (R,S∪S′), where R is a quasiordered set,

S = {s1, . . . ,sn}, S′ = {s′1, . . . ,s′n}
are disjoint n-element subsets of R and

ρ = {(( f (s1), . . . , f (sn)),( f (s′1), . . . , f (s′n))) | f : R→ P is monotone}.
Now, by reflexivity, (R,S) and (R,S′) are two representations of D, and the restric-
tions of R to the sets S and S′ are isomorphic quasiordered sets via the map si 7→ s′i.
Let C be a subalgebra of D. Then any representation (R,S∪ S′) of ρ extends to a
representation (R,S∪S′) of ρ|C by adding suitable vertices and edges to (R,S∪S′).

In the proof of our main result we require the following lemma.

Lemma 3.3. Let (R,S∪S′) be a representation of a binary reflexive relation ρ on
D where D is a subalgebra of Pn where

S = {s1, . . . ,sn} and S′ = {s′1, . . . ,s′n}.
(1) If i, j ∈ S and i≤ j′ in R, then i≤ j and i′ ≤ j′ in R.
(2) Let i, j ≤ k, l in S and i∗ ∈ {i, i′}, j∗ ∈ { j, j′}, k∗ ∈ {k,k′}, l∗ ∈ {l, l′}. If

there is an r∗ ∈ R such that i∗, j∗ ≤ r∗ ≤ k∗, l∗, then there exist r,r+ ∈ R
such that i, j ≤ r ≤ k, l and i′, j′ ≤ r+ ≤ k′, l′.
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FIGURE 2. A figure presenting a particular case in the second
statement of Lemma 3.3. It may happen that the vertices r and
r+ are outside of S and S′, respectively.

Proof. Notice that if i 6≤ j in R, then there is a monotone map f : R→ P such that
f (i) = 1 and f ( j) = 0. Hence, for the first part of claim (1), it suffices to prove that
for any monotone map f : R→ P, f (i) ≤ f ( j). So let f : R→ P be an arbitrary
monotone map. Then f |S ∈D. Since ρ is reflexive, if we color the vertices of both
S and S′ by f |S in R, we obtain an extendible colored quasiordered set. Suppose
that g : R→ P is an extension of the coloring of this colored quasiordered set. Then
f (i) = g(i)≤ g( j′) = g( j) = f ( j). Thus i≤ j. We similarly obtain that i′ ≤ j′.

For the first part of claim (2), we shall prove that there is an r such that i, j≤ r≤
k, l. If the sub quasiordered set spanned by the elements i, j,k, l is not a 4-crown—
see the third item in Figure 1—we are clearly done. So we may assume that i, j,k, l
spans a 4-crown in R. Suppose that there is no r such that i, j ≤ r ≤ k, l. Notice
then if we color i, j,k, l by a,b,c,d, respectively, in R, the so obtained coloring f is
monotone on its domain and the resulting colored poset does not contain a tight X .
Thus f extends to R. Then f |S ∈D. Since ρ is reflexive, if we color the vertices of
both S and S′ accordingly to f |S in R, we obtain an extendible colored quasiordered
set. On the other hand i∗, j∗,r∗,k∗, l∗ form a tight X in this colored quasiordered
set, a contradiction. The existence of r+ such that i′, j′ ≤ r+ ≤ k′, l′ is obtained
similarly. �

A subset {i0, . . . , il, i′0, . . . , i′l} of a representation (R,S∪ S′) is called an l-step
tilted ladder if {i0, . . . , il} ⊆ S, {i′0, . . . , i′l} ⊆ S′, i0 ≤ ·· · ≤ il , i′0 ≤ ·· · ≤ i′l and either
iv ≤ i′v+1, 0 ≤ v ≤ l− 1 or iv+1 ≥ i′v, 0 ≤ v ≤ l− 1. See Figure 3. A tilted ladder
{i0, . . . , il, i′0, . . . , i′l} with iv ≤ i′v+1, 0 ≤ v ≤ l−1 (iv+1 ≥ i′v, 0 ≤ v ≤ l−1) is non-
crossed if i′0 6≤ il (i0 6≤ i′l) in R.

Now we have all the tools at our disposal to state and prove our main theorem.

Theorem 3.4. Let P be the 6-element poset in Figure 1, P an order primal algebra
of finite type related to P, and Σ a finite basis for the variety VP generated by P.
Let B be an algebra that supports a majority term operation m and term operations
satisfying Σ. Let ρ be a reflexive compatible binary relation of B. Then every edge
of ρ is in a directed cycle of length 5 in the digraph (B,ρ). Hence every variety
that supports a majority term m and terms satisfying Σ is 5-permutable.
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FIGURE 3. Two-step tilted ladders in representation (R,S∪S′)

Proof. The last statement of the theorem immediately follows from the first state-
ment of the theorem by Theorem 3.1 of Hagemann and Mitchke. So we prove the
first statement.

Let us assume to the contrary that (Y0,Z0) ∈ ρ and there is no directed path of
length 4 from Z0 to Y0 in the digraph (B,ρ). Our aim is to get a contradiction. We
mention that if B was finite, we could basically describe B by a (finite) representa-
tion, and we could give a much simpler argument than what follows. However, in
general, B may be infinite, not even locally finite, which causes technical difficul-
ties in the proof. As we earlier remarked, we may assume without loss of generality
that B is a subuniverse of PH for some set H.

We define two subalgebras of PH . Let C0 equal the subalgebra generated by
{Y0,Z0} in PH , and let D0 equal the subalgebra generated by

{m(W1,W2,W3) |Wi ∈C0, i = 1,2,3}
in PH . We note that

{Y0,Z0} ⊆C0 ⊆ D0 ⊆ B,
and both C0 and D0 are finite. Indeed, D0 is a finitely generated algebra in the
variety generated by a finite algebra, namely by P. Since D0 ⊆ PH is finite, there
exist finitely many elements in H, say n of them, such that the projection map from
D0 to those coordinates is bijective. Let Y , Z, D, C, ρD be the images of Y0, Z0, D0,
C0 and ρ|D0 under such a bijective projection. Let ρC = ρD|C. Since the bijective
projection from D0 to D is an isomorphism of algebras, there is no directed path of
length 4 from Z to Y in the digraph (D,ρD).

Let (T,S∪ S′) and (R,S∪ S′) be representations for ρC and ρD, respectively,
where

S = {s1, . . . ,sn} and S′ = {s′1, . . . ,s′n}.
Then the map i 7→ i′ is an isomorphism between the restrictions of T to S and S′,
and also between the restrictions of R to S and S′. As we remarked earlier, we may
assume that R⊆ T .

We define two colored digraphs related to C and D, respectively. First, we define
the colored digraph WC for C. The base digraph of WC is obtained from four copies

(T0,S0∪S′0), . . . ,(T3,S3∪S′3)

of (T,S∪S′) by the natural identifications

S′0 = S1, S′1 = S2, S′2 = S3
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where natural identification is meant to identify the relevant copies of s′ and s for
each s ∈ S. The coloring of WC is obtained by coloring the elements of S0 by Z and
coloring the elements of S′3 by Y . The colored digraph WD is defined similarly by
using four copies

(R0,S0∪S′0), . . . ,(R3,S3∪S′3)
of the representation (R,S∪ S′) of ρD. Observe that neither WC nor WD is ex-
tendible, for otherwise (Y,Z) would lie in a 5-cycle of (C,ρC) or (D,ρD) and hence
(Y0,Z0) would lie in a 5-cycle of (B,ρ).

Let ŴD be the colored quasiordered set obtained from WD by taking the transitive
closure of the relation of WD while preserving the coloring of WD. Then ŴD is a
non-extendible colored quasiordered set. So it contains a twisted edge or a tight X .
Now, our aim is to prove the following.

Claim: There is a non-crossed two-step tilted ladder that is contained in both
of the representations (T,S∪S′) and (R,S∪S′).

 S S  = S'1 00 S  = S'2 1 S  = S'3 2  S'3

i 
i 

i

1

2
3

R 0 R 2

R1 R 3

 S' S

R

i 0

i 1

i 2

i 3

i 4 i' 4
i' 3
i' 2
i' 1
i' 0

colored by Z Y

i 0

i4

colored by

FIGURE 4. A twisted path in WD coming from a twisted edge in
ŴD and the corresponding four-step tilted ladder in R. The vertices
of the path in the upper picture are labeled by the corresponding
elements in S. The black nodes are colored vertices. The one
labeled by i0 is colored by q and the one labeled by i4 is colored
by p where q 6≤ p.

First, let us look at the case, when ŴD contains a twisted edge. Then WD must
contain a directed path of length 4, say

u0→ u1→ u2→ u3→ u4

where u j ∈ S j for 0≤ j≤ 3, u4 ∈ S′3, u0 is colored by q and u4 is colored by p such
that q 6≤ p. We call this path a twisted path. Suppose that u j is a copy of i j ∈ S if
0≤ j ≤ 4. We depicted the situation in Figure 4.
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Clearly, the edges in the twisted path yield that i j ≤ i′j+1, 0≤ j≤ 3 in R. Hence,
by item (1) of Lemma 3.3, we also have that i0 ≤ ·· · ≤ i4 in S and i′0 ≤ ·· · ≤ i′4 in
S′. So the elements i j and i′j where 0≤ j ≤ 4 constitute a four-step tilted ladder in
R. Since R⊆ T , the same four-step tilted ladder is contained in T as well.

 S' S

T

i 0

i 1

i 2

i 3

i 4 i' 4
i' 3
i' 2
i' 1
i' 0

Ycolored by colored by Z

FIGURE 5. The four-step tilted ladder in (T,Y ∪Z) with the cross-
edge (i′0, i4) where i4 is colored by p and i′0 is colored by q.

We shall prove that this ladder is non-crossed, that is, i′0 6≤ i4 in T . Suppose to the
contrary that i′0 ≤ i4 in T . Since (Y,Z)∈ ρC, the colored quasiordered set (T,Y ∪Z)
where Y and Z are considered as partial maps with domains S and S′, respectively,
is extendible, see Figure 5. It follows that Z(i′0)≤ Y (i4) which contradicts the fact
that

Z(i′0) = q 6≤ p = Y (i4).

Thus (T,S∪ S′) contains a non-crossed four-step tilted ladder. Observe then that
i0, i1, i2, i′0, i

′
1 and i′2 form a non-crossed two-step tilted ladder in (T,S∪S′). More-

over, this is a two-step tilted ladder also contained and non-crossed in (R,S∪S′).
In the case when ŴD contains a tight X , our aim is to prove the same conclu-

sion, namely, that there is a non-crossed two-step tilted ladder contained in both of
(T,S∪ S′) and (R,S∪ S′). The 4 colored elements of the tight X fall in the union
of S0 and S′3. So either one of S0 and S′3 contains 1 colored element and the other
contains 3 of them, or both of S0 and S′3 contain 2 colored elements. In either case,
the midpoint of the tight X is in Rt for some 0 ≤ t ≤ 3 and is denoted by rt . Then
in WD, rt is connected to the colored elements of the tight X via four directed paths
whose vertices—possibly apart from rt—are in the union of the Sv, 0≤ v≤ 3, and
S′3, and each of these paths has at most one vertex in each of the Sv, 0≤ v≤ 3, and
S′3. We call the subdigraph formed by these four directed paths and rt a tight X of
paths in WD. An example of a tight X of paths is depicted in the first picture of
Figure 6.

We call the four directed paths the branches of the tight X of paths. We make this
definition more precise: if rt is in Sv for some 0≤ v≤ 3 we count rt to the branches,
otherwise the branches are meant without rt . Clearly, the branches with endpoints
in S0 have the same length. The same is true for the branches with endpoints in
S′3. We say that a branch is long if it has length at least 2. So either all of the
branches with endpoints in S0 are long or all of the branches with endpoints in S′3
are long. Without loss of generality we assume that the branches with endpoints in
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S′3 are long. By the use of item (1) of Lemma 3.3, similarly as we saw it for twisted
paths, each of these long branches induces a tilted ladder of at least two steps in R.
However, some of the induced tilted ladders might not be non-crossed.

Suppose that rt ∈WD is a copy of r∗ ∈ R and the endpoints of the branches in Rt
are the copies of i∗, j∗,k∗ and l∗ in R, respectively, where

i∗ ∈ {i, i′}, j∗ ∈ { j, j′}, k∗ ∈ {k,k′}, l∗ ∈ {l, l′} for some i, j,k, l ∈ S.

Clearly, two of i∗, j∗,k∗ and l∗ are less than or equal to r∗ and two of them are
greater than or equal to r∗. We may assume that i∗, j∗ ≤ r∗ ≤ k∗, l∗. By applying
item (2) of Lemma 3.3, there exists an r+ ∈ R such that i′, j′ ≤ r+ ≤ k′, l′.

Let u ∈WD be one of the colored elements in S0. So u is an endpoint of a branch
of the tight X of paths. Suppose that u is a copy of h′ ∈ S′ and the other endpoint
of the branch in Rt is a copy of one of the elements i′, j′, k′, l′, say l′, in S′. By
item (1) of Lemma 3.3, the edges of this branch yield a chain in S′— the S′ part
of the tilted ladder related to this branch— with maximal element h′ and minimal
element l′ . By r+ ≤ l′, we obtain r+ ≤ h′. Thus, all of the colored vertices of the
tight X of paths in S0 are copies of elements of S′ that are comparable with r+ in R.

l

r

 S S  = S'1 00 S  = S'2 1 S  = S'3 2  S'3

R 0 R 2

R 1 R 3

j

l k

i

Ycolored byZ

S S'
R

l'
 

i

k'

i'

r
r

k

i

l

j

k'

i' j'

k
k'2

1

0

1

0

2k

00

l1 l'1

0 0

1
i2

1

2i'

0
j'1

0

1
j

colored by

0

0

1

j
1

0

0
2kk1

i
i1

2

*
+
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FIGURE 6. A tight X of paths in WD coming from a tight X in ŴD
and the corresponding edge structure of R. The vertices of the tight
X of paths in the upper picture are labeled by the corresponding
elements in S and r∗ ∈ R. The black nodes are colored vertices.
The ones labeled by i2, j1, k2, l1 are colored by a, b, c, d, respec-
tively.

Before continuing the main line of our proof, we supply an example in Figure 6
to illustrate the notions introduced in the preceding few paragraphs.The tight X of
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paths in the first picture of Figure 6 has two long branches of length 2: the paths
that are labeled by the i and the k, respectively. The paths that are labeled by the j
and the l, respectively, are short branches of length 1. The tight X of paths induces
some edges in R as shown in the lower picture of the figure. The edges between S
and S′ and the edges with endpoint r∗ are directly obtained from edges of the tight
X of paths. The vertical edges come from the so obtained edges which connect
S and S′ by the use of item (1) of Lemma 3.3. The vertex r+ and the edges with
endpoint r+ are obtained from the edges with endpoint labeled by r∗ by item (2)
of Lemma 3.3. Observe that the four branches of the tight X of paths induce four
tilted ladders in the lower picture: the ones given by the i, the j, the k and the l,
respectively. By R ⊆ T , (T,S∪ S′) also contains the edges induced by the tight X
of paths in R.

S S'
T

l'
 

i

k'

i'

r
r

k

i

l

j

k'

i' j'

k
k'2

1

0

1

0

2k

00

l1 l'1

0 0

1
i2

1

2i'

0
j'1

0

1
j

Y colored byZcolored by

*
+

FIGURE 7. The shape of (T,Y ∪Z) with tilted ladders and cross-
edges (i2, i′0) and (k′0,k2) indicated if WD contains the tight X of
paths in Figure 6. The vertices i2, j′1,k2, l′1 are colored by a,b,c,d,
respectively.

It turns out that in the example, one of tilted ladders labeled by the i or the k is
non-crossed. Suppose to the contrary that i2 ≤ i′0 and k′0 ≤ k2, see Figure 7. Hence

i2, j′1 ≤ r+ ≤ k2, l′1.

Moreover, because of (Y,Z) ∈ ρC, the colored quasiordered set (T,Y ∪ Z) is ex-
tendible. This is impossible, since i2, j′1, k2, l′1 are colored by a, b, c, d, respec-
tively, in (T,Y ∪Z) and so i2, j′1, r+, k2, l′1 would constitute a tight X in (T,Y ∪Z).

We return to the proof of the general case. By R⊆ T , the edges induced by the
tight X of paths in R are also contained in T . We prove that at least one of the tilted
ladders corresponding to a long branch ending in S′3 is non-crossed. Suppose that
all of them were crossed.

Let u∈WD be one of the colored endpoints of a branch in S′3. Suppose that u is a
copy of h ∈ S and the other endpoint of the branch is a copy of one of the elements
i′, j′, k′, l′, say k′, in S′. Since the tilted ladder corresponding to this long branch is
crossed, k′ ≤ h in T . By r+ ≤ k′, we have r+ ≤ h. Thus, all of the colored vertices
of the tight X of paths in S′3 are copies of elements in S that are comparable with
r+ in T .

Now we can finish off the proof like in the example. Since (Y,Z) ∈ ρC, the
colored quasiordered set (T,Y ∪Z) is extendible. The four colored elements of the
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tight X of paths are copies of four elements colored by a, b, c, d, respectively,
(T,Y ∪Z). We already verified above that these four colored elements of (T,Y ∪Z)
are comparable with r+. Actually, the proof of this fact also gives that these five
elements constitute an X . This X clearly is a tight X in (T,Y ∪Z), a contradiction.

Hence there is a non-crossed tilted ladder in T which corresponds to a long
branch, so this tilted ladder must have at least two-steps. This implies, just as we
saw it in the case of a twisted edge, that there is a non-crossed two-step tilted ladder
in (T,S∪S′) and hence in (R,S∪S′). This concludes the proof of the claim.

Thus, the non-extendibility of WD yields that there is a non-crossed two-step
tilted ladder contained in (R,S∪S′) and (T,S∪S′). We shall define four elements
Qa,Qb,Qc and Qd in C such that Qa,Qb

ρC−→ Qc,Qd . Let us take a non-crossed
two-step tilted ladder in (T,S∪S′) that is determined by the vertices i≤ j≤ k of S.
First, we define Qa as a map from S to P:

Qa(t) :=


a, if i≤ t ≤ k,
1, if i≤ t 6≤ k,
0, otherwise.

The map Qb from S to P is defined similarly to Qa by using b instead of a. We
repeat the preceding definition of Qa and Qb for Qc and Qd , except that we use
c,d, i′, j′,k′ and S′ instead of a,b, i, j,k and S, respectively. In this way we obtain
two maps Qc and Qd from S′ to P. The so defined maps Qa,Qb,Qc and Qd are
clearly monotone partial maps from T to P. Let us color the elements of S and S′

by Qa and Qc, respectively, in T .
Obviously, the colored quasiordered set (T,Qa∪Qc) contains no tight X . Since

i≤ j ≤ k determine a non-crossed tilted ladder contained in (T,S∪S′), there is no
edge in T from the interval [i′,k′] to the interval [i,k]. Hence (T,Qa∪Qc) contains
no twisted edges as well. Thus, the colored quasiordered set (T,Qa ∪Qc) is ex-
tendible. So Qa

ρC−→ Qc, and hence Qa and Qc are in C. We obtain Qa
ρC−→ Qd and

Qb
ρC−→ Qc,Qd similarly, hence Qb,Qd ∈ C. Thus Qa,Qb

ρD−→ Qc,Qd .
For the preimages Q′a,Q

′
b,Q

′
c,Q

′
d of Qa,Qb,Qc,Qd in C0 we have Q′a,Q

′
b

ρ−→
Q′c,Q

′
d . Moreover the majority operation m is compatible with ρ on B hence

Q′a,Q
′
b

ρ−→ m(Q′a,Q
′
b,Q

′
c)

ρ−→ Q′c,Q
′
d where m(Q′a,Q

′
b,Q

′
c) is in D0. Therefore, there

is an element M ∈ D such that Qa,Qb
ρD−→M

ρD−→ Qc,Qd . From this fact we derive
a contradiction.

We define a colored digraph (U, f ). The digraph U is formed by four copies
(Rv,Sv ∪ S′v), 0 ≤ v ≤ 3, of (R,S∪ S′) with the natural identifications S′0 = S′1 =
S2 = S3.The partial map f is defined by coloring the elements in S0, S1, S′2 and
S′3 by Qa,Qb,Qc and Qd , respectively. The existence of M guarantees that (U, f )
is extendible. On the other hand, the two-step tilted ladder i ≤ j ≤ k, i′ ≤ j′ ≤ k′

in (R,S∪ S′) from the definition of Qa has a copy iv ≤ jv ≤ kv, i′v ≤ j′v ≤ k′v in
(Rv,Sv∪S′v) for each 0≤ v≤ 3. We sketched the situation in Figure 8. Notice then
that i0, i1 ≤ j′0 ≤ k′2,k

′
3 form a non-extendible colored digraph contained in (U, f )

where i0, i1,k′2,k
′
3 are colored by a,b,c,d respectively, a contradiction. �

As we explained at the beginning of this section, Theorem 3.4 yields the follow-
ing consequence.
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FIGURE 8. A part of digraph U with two-step tilted ladders. The
vertices i0, i1, j′0,k

′
2,k
′
3 form a non-extendible colored digraph in

(U, f ).

Corollary 3.5. For any n ≥ 5, n-permutability is not join-prime in the lattice of
interpretability types of varieties.

We do not know if the corollary holds when n = 3 or n = 4. Next we are going
to prove that 4-permutability cannot be achieved in Theorem 3.4. In order to do
this we need to define the notion of a G-obstruction for a digraph G. A G-colored
digraph is a pair (H, f ) where H is a digraph and f is a partial map from H to
G. A G-colored digraph is extendible if there is an edge-preserving total map from
H to G that extends f . A G-colored digraph (H, f ) is a G-obstruction if (H, f )
is non-extendible but any (H ′, f ′) properly contained in (H, f ) is extendible. It is
immediate from the definition that if G is reflexive, then the base digraph of any
G-obstruction is a connected irreflexive digraph. We make use of the following
fact, cf. Theorem 3.8 in [13], in the proof of the next proposition: a digraph G
admits a majority operation if and only if the number of colored elements in any
G-obstruction is at most 2.

Proposition 3.6. Let P be the 6-element poset in Figure 1, P an order primal alge-
bra of finite type related to P, and Σ a finite basis for the variety VP generated by P.
Let B≤P7 be the subalgebra defined by the representation (Q,S) in Figure 9 and ρ

the reflexive binary relation on B defined by the representation (R,S∪S′) in Figure
9. Then the digraph (B,ρ) admits a majority operation m and operations satisfy-
ing Σ. Moreover, ((a,b,c,c,c,1,1),(a,b,d,1,1,d,d)) is an edge of (B,ρ), but no
directed cycle of length 4 contains this edge in (B,ρ). Hence there exists a variety
that is not 4-permutable and supports a majority term m and terms satisfying Σ.

Proof. Let B̃ denote the digraph (B,ρ). It should be clear that ρ is a reflexive
relation on B and that the digraph B̃ admits operations satisfying Σ. Let

fc = (a,b,c,c,c,1,1) and fd = (a,b,d,1,1,d,d).



16 GERGŐ GYENIZSE, MIKLÓS MARÓTI, AND LÁSZLÓ ZÁDORI

1 2

4

5 7

6

1

4

5

6

7 7'

6'

5'

4'

2'2 1'
3 3 3'

FIGURE 9. A representation (Q,S) of B ≤ P7 and a repre-
sentation (R,S ∪ S′) of the binary relation ρ on B where S =
{1,2,3,4,5,6,7} and S′ = {1′,2′,3′,4′,5′,6′,7′}.

It is obvious now that ( fc, fd) ∈ ρ. In order to prove that there is no directed path
of length 3 from fd to fc in B̃ we define a colored digraph UB. We put together
UB from three separate copies (R j,S j ∪ S′j), 0 ≤ j ≤ 2, of (R,S∪ S′) with the nat-
ural identifications S′0 = S1,S′1 = S2 and with coloring the elements of S0 by the
components of fd and the elements of S′2 by the components of fc in an orderly
manner. Let ÛB be the colored quasiordered set obtained from UB by taking the
transitive closure of the relation of UB. Observe now that there is a directed path
of length 3 from fd to fc in (B,ρ) if and only if UB is extendible if and only if
ÛB is extendible. Nevertheless, the latter condition does not hold since—with the
notation S j = {1 j, . . . ,7 j} and S′j = {1′j, . . . ,7′j} for 0≤ j≤ 2—the colored vertices
10,20,50,7′2 and the midpoint (the vertex distinct from the elements of S1 and S′1)
of R1 form a tight X in ÛB.

The main part of the proof is to verify that the digraph B̃ admits a majority
operation. As we mentioned preceding the present proposition, it suffices to prove
that every B̃-obstruction has at most two colored elements. Let us suppose to the
contrary that (H, f ) is a B̃-obstruction with at least three colored elements. So H
is a digraph, and f is a partial map from H to B ⊆ P7. We define a P-colored
digraph W as follows. For every edge e in H we take a copy (Re,Se ∪ S′e) of the
representation (R,S∪S′) in Figure 9. If two edges e and g have a common vertex,
we make one of the natural identifications Se = Sg, Se = S′g, S′e = Sg and S′e = S′g
accordingly to the type of the incidence of the edges e and g (for example, we
make Se = Sg if the edges e and g have a common tail-vertex). Finally, to complete
the definition of W , for any colored vertex h of (H, f ) we color the subdigraph
(Re,Se∪S′e) of W by f (h) at the elements of Se if h is the tail-vertex of e and at the
elements of S′e if h is the head-vertex of e. This is obviously a consistent definition.

Let Ŵ be the colored quasiordered set obtained from W by taking the transitive
closure of the relation of W . We gather some facts about Ŵ before continuing
the main line of our proof. Let α denote the largest equivalence contained in the
quasiorder relation of Ŵ . Let Ŵ/α be the quotient poset of W by α . Notice that as
H is connected, Ŵ/α has two minimal elements: one of them is the α-block that
contains the elements 1e and 1′e for all e, and the other is the α-block that contains
the elements 2e and 2′e for all e. The non-minimal α-blocks are of one element. The
quotient poset Ŵ/α has height 3. Each of the minimal α-blocks contains colored
elements, and all of those colored elements are colored by the same color since
|H| ≥ 3.

We return to the main line of our proof. Since (H, f ) is non-extendible, W and
Ŵ are non-extendible. So Ŵ contains an obstruction O in Ŵ . By Lemma 3.2, O is a
tight X or a twisted edge. If O is a tight X , then the middle element of O is certainly
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not a maximal element of Ŵ , i.e., it is not labeled by 5e,5′e,7e and 7′e. Suppose that
3e is one of the minimal elements of O for some e. Then the middle element of
O must be 4e or 6e, a contradiction, since both vertices are colored. Similarly, 3′e
is not a minimal element in O. Hence the minimal elements of O must fall in the
minimal α-blocks of Ŵ , separate ones of course. We say that h ∈ Dom( f ) entails
a colored element v ∈W if there is an edge e incident with h such that v is in Se
or S′e according if h is a head or tail vertex of e. Clearly, (H, f ) has two colored
vertices that entail the two maximal elements of O. Notice that these two colored
vertices of H also entail the minimal elements of O, since these minimal elements
are in the two minimal α-blocks of Ŵ . If O is a twisted edge, then (H, f ) clearly
has two colored vertices that entail the two colored elements of O.

We are on the way to derive a contradiction to our assumption that (H, f ) has at
least three colored elements. We just proved in the preceding paragraph that there
are two colored elements h1 and h2 of (H, f ) that entail all of the colored elements
of O. Let h ∈ H be a colored element that differs from h1 and h2. Let us remove
h from (H, f ). We prove that the remaining B̃-colored digraph (H ′, f ′) is still non-
extendible. We remark that in H ′ and H we have the same edges incident with hi
for each 1≤ i≤ 2, since in (H, f ) there are no edges between colored elements. Let
W ′ be the colored digraph obtained from W by removing the copies of (Re,Se∪S′e)
for the edges e incident with h. Let Ŵ ′ be the relational structure obtained from
W ′ by taking the transitive closure of the relation of W ′. Notice that Ŵ ′ contains
O. So Ŵ ′ is non-extendible, and hence (H ′, f ′) is non-extendible. This contradicts
the minimality of (H, f ). Therefore, any B̃-obstruction has two colored elements.
Thus B̃ admits a majority operation.

Finally, the variety generated by an algebra whose underlying set is B and whose
basic operations are a majority operation preserving ρ and operations satisfying
Σ—we have just proved that there exists such an algebra—is not 4-permutable by
Theorem 3.1 of Hagemann and Mitshke. �

In Problem 1.6 of [14] Opršal asked whether for any given n≥ 3, n-permutability
is join-prime in the lattice of interpretability types of idempotent varieties. For
n = 2, the question is settled in the positive by the 2-cube term result of Kearnes
and Szendrei in [10]. We thought that, by transforming the proof of Theorem 3.4
for the idempotent case, we would be able prove that for any n ≥ 5 the answer
to Opršal’s question is negative, but our attempt to achieve such a result has been
unsuccessful so far.
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